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Introduction and background 

Empirical models are used to understand and predict levels of outdoor air pollution, including at 

unmeasured locations and typically with good spatial precision. The name (“empirical”) emphasizes that 

the models reflect empirical measurements. Such model results have been used, for example, in health 

risk assessment, environmental epidemiology, and environmental justice analysis.  

Generating empirical-model results typically involves three steps: (1) Model building: generating an 

empirical model to predict measured concentrations (i.e., the dependent variable; the model is calibrated 

to and attempts to predict these), using several parameters that might correlate with concentrations (i.e., 

the potential independent variables). (2) Model testing, to quantify parameters such as uncertainty, 

robustness, error, and bias. If multiple models were built by a research group, the model-testing phase 

could involve a model-selection process. Hold-out cross-validation typically occurs in this step. (3) Model 

application, wherein the final selected model(s) is used to estimate concentrations throughout the domain 

of interest (e.g., at all Census Block centroids in the continuous US). 

Early empirical models were developed at the urban-scale, using land-use variables (e.g., road locations, 

industrial locations) and linear regression, and hence were called “land-use regression” (LUR).1–6 

Subsequent developments include (1) adding many more independent variables, including microscale 

point-of-interest sources,7,8 satellite-derived estimates for pollution (e.g., atmospheric column totals) or 

land-cover,9–11 and predictions from chemical transport models,10,12 (2) deriving independent variables 

from imagery (Google Street View images or satellite images) or using images directly via machine 

learning rather than first obtaining specific independent variables,13–18 (3) employing more-advanced 

mathematics rather than linear regression,19–23 (4) quantifying temporal variability,24,25 and (5) using a 

national or international, rather than urban, spatial domain.26–31 For the dependent variable, early models 

often employed purposefully-placed passive NO2 samplers;32–34 subsequent developments include using 

regulatory monitoring data,27,28,30 mobile monitoring,20,35–40 and freely-available data from ubiquitous low-

cost sensors already deployed by the public.41,42 Strengths of empirical models include excellent spatial 



Page 3 of 18 
 

precision in model-predictions, and being based in observations and datasets (e.g., land-use datasets; 

satellite observations); weaknesses include the long list of input data required (which is unavailable for 

the future and for the distant past), inability to allow “what if?” questions (e.g., “what if emissions were 

reduced?”), and potential error/bias in the measurements and in the models. Empirical models reflect 

typical correlations with specific land uses, so they are weaker at detecting atypical conditions (e.g., an 

unexpected hotspot) or conditions not well correlated with a land-use in the model. 

Studies to intercompare empirical models are scarce, especially for large geographies. Some studies have 

compared empirical models with mechanistic models (e.g., CMAQ),4,43 satellite-based models (e.g., 

aerosol optical depth, AOD),44,45 or hybrid models.46,47 Other studies have compared results using 

different methods for model-building (e.g., LUR vs. machine learning vs. kriging vs. hybrid empirical 

models).48–50 However, most prior comparisons were at the city or region level, and comparisons were 

generally within a single research team. We identified only one study that compared empirical models 

nationwide.16 

 

Additional considerations regarding the methods 

Our approach is to intercompare a sample of six national empirical models51–59 for annual-average 

ambient PM2.5. We focused on annual-averages for fine particles (PM2.5) for several reasons: PM2.5 is 

an important criteria-pollutant, regulated by the US EPA through a health-based National Ambient Air 

Quality Standard (NAAQS); millions of people in the US live in areas that exceed the NAAQS (US EPA, 

2022a); and the health effects associated with annual-average PM2.5 are large. Importantly, multiple 

national empirical models predict annual-average PM2.5 available for this pollutant. 

In general, one way to intercompare models would be for all modelers to pre-agree to a set of model-

building and model-testing observations. (Or, if there were a set of measurements that no model included 

in model-building — e.g., a dataset that was unknown or otherwise unused — then the outcome would be 
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similar: a dataset that could be used to test all of the models.) In this case, it would be possible to compare 

each method against the held-out cross-validation measurements. However, in the current 

intercomparison, each research group used their own held-out data, comparison metrics, and approach to 

investigate model uncertainty. Furthermore, the models incorporate the monitoring data in different ways 

(e.g., via a kriging component); for that reason, simply comparing the six models against observations 

(which were used during model-building) may not shed light on model reliability at locations without 

measurements. 

Instead, we directly intercompare the models, without comparing against held-out measurements. We do 

not have “gold-standard” observations to compare against. Nevertheless, we believe that useful insights 

can be gained from the intercomparisons conducted. 

Limitations of this research include the following. (1) We considered one set of spatiotemporal 

comparisons (annual-average; national/regional/urban-rural) and one set of metrics (RMSE, correlation), 

but did not compare all possible comparisons (e.g., did not investigate seasonal or daily models, nor sub-

regional or local/community model results) or metrics. Other metrics or spatiotemporal representations of 

the models too may be useful for health, environmental justice, or risk analysis. (2) We have not 

specifically investigated the fitness of these models for specific purposes, including epidemiological 

studies, environmental justice studies, public outreach, regulatory analysis, or risk assessment. (3) As 

mentioned above, we did not compare against measurements; this paper presents only a model-model 

comparison. Model-model agreement is not the same as a model being “correct”. (4) We have identified 

that the empirical models are relatively consistent with each other, but we have not investigated, within 

the models themselves, why. For example, it may be that the models use the same or similar independent 

variables; or, it may be that the similarities in model-prediction are despite large differences in 

independent variables employed. 

Strengths of this research include the following. We inter-compared several models, and shed light on 

similarities and differences nationally, regionally, for urban/rural differences, by pollution level, and by 
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population density. This is, to our knowledge, the first intercomparison of national empirical models. As 

noted above, we did not compare against monitors; however, that aspect can partially be viewed as a 

strength, because the monitoring network is not evenly distributed spatially. Comparisons of models at 

monitor locations may or may not shed light on concentrations at unmonitored locations; the comparisons 

here are at Census geographics (Tracts) and so reflect locations where people live. Although PM2.5 is 

generally considered to be a regional pollutant, when considering the whole US there is a wide range of 

concentrations (here: ~2 to ~15 μg/m3, or approximately a 7-fold range). 

The models employ different techniques for model building. Some are closer to a linear model, some use 

machine learning or highly complex mathematical relationships that would be difficult for a human to 

create or understand. They employ a wide variety of independent variables. However, all of the models 

use EPA monitoring station data as the model-building dataset. Whatever strengths or weaknesses exist in 

using EPA monitors (and their locations) for empirical models, those likely impact all of the models.  

 

Sensitivity analyses 

We conducted several sensitivity analyses. First, reflecting that SEARCH results are only available in the 

eastern half of the US, we generated pairwise scatterplots for only the eastern half of the US (Figure S1). 

Next, we generated separate scatterplots for urban-only (Figure S2) and urban-only in the eastern half of 

the US (Figure S3) and for rural-only (Figure S4) and for rural-only in the eastern half of the US (Figure 

S5). We find, for example, that the maximum RMSD is slightly larger for rural areas than for urban areas, 

a finding that may differ from expectations but is consistent with results described in the main paper 

(Figure 3E) and may reflect the lower density of monitors in rural areas or that the correlation between 

concentrations and land use may be lower in rural than in urban areas.  

We repeated the analyses in Figure 3 but for the eastern half of the US (Figure S6 and S7). The findings 

are generally consistent with results in the main paper: the models generally agree with each other. The 
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range of predictions (a measure of model-model disagreement) is greater at lower-concentration locations 

than at high-concentration locations. 
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Figures S1 to S9 

 

 
  
Figure S1: Scatterplot matrix for 2010 tract-level PM2.5 (E-US only). Same as Fig 1, but for locations 
in E-US only. Scatterplots in the upper right show pairwise tract-level predictions from each model. 
Dashed line shows 1:1 line, red line shows linear trendline. Corresponding boxes in the bottom left show 
Pearson’s correlation (r; unitless) and root mean squared difference (RMSD; µg/m3) between model 
predictions. 
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Figure S2: Scatterplot matrix for 2010 urban tract-level PM2.5. Same as Fig 1, but for urban locations 
only. Scatterplots in the upper right show pairwise tract-level predictions from each model. Dashed line 
shows 1:1 line, red line shows linear trendline. Corresponding boxes in the bottom left show Pearson’s 
correlation (r; unitless) and root mean squared difference (RMSD; µg/m3) between model predictions. 
  
 



Page 9 of 18 
 

 

 
Figure S3: Scatterplot matrix for 2010 urban tract-level PM2.5 (E-US only). Same as Fig 1, but for 
urban locations in E-US only. Scatterplots in the upper right show pairwise tract-level predictions from 
each model. Dashed line shows 1:1 line, red line shows linear trendline. Corresponding boxes in the 
bottom left show Pearson’s correlation (r; unitless) and root mean squared difference (RMSD; µg/m3) 
between model predictions. 
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Figure S4: Scatterplot matrix for 2010 rural tract-level PM2.5. Same as Fig 1, but for rural locations 
only. Scatterplots in the upper right show pairwise tract-level predictions from each model. Dashed line 
shows 1:1 line, red line shows linear trendline. Corresponding boxes in the bottom left show Pearson’s 
correlation (r; unitless) and root mean squared difference (RMSD; µg/m3) between model predictions. 
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Figure S5: Scatterplot matrix for 2010 rural tract-level PM2.5 (E-US only). Same as Fig 1, but for rural 
locations in E-US only. Scatterplots in the upper right show pairwise tract-level predictions from each 
model. Dashed line shows 1:1 line, red line shows linear trendline. Corresponding boxes in the bottom 
left show Pearson’s correlation (r; unitless) and root mean squared difference (RMSD; µg/m3) between 
model predictions. 
  
 



Page 12 of 18 
 

  

Figure S6: Predictions by model and concentration level (E-US only). Boxplots show range of tract-
level model predictions (y-axis) as a function of the median concentration among model predictions 
within each tract, binned to 1 µg/m3 bins (x-axis). Horizontal bar shows the median, box shows the 
interquartile range, and vertical lines show the 5th and 95th percentiles of predicted concentrations for each 
model within each bin. 
 

 
  
Figure S7: Variability by concentration level (E-US only). Boxplots show within-tract variation (y-
axis) as a function of the median concentration among model predictions within each tract, binned to 1 
µg/m3 bins (x-axis). Within-tract variation is calculated as either max minus the min (left) or 2nd max 
minus 2nd min (right) of model predictions within each tract. Horizontal bar shows the median, box shows 
the interquartile range, and vertical lines show the 5th and 95th percentiles of the variability for tracts within 
each bin. 
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Figure S8: Predictions by model and population density. Boxplots show range of tract-level model 
predictions (y-axis) as a function of the tract-level population density (x-axis), binned to equally space 
linear- (left) and log-space (right) bins (note: last bin contains remaining data). Horizontal bar shows the 
median, box shows the interquartile range, and vertical lines show the 5th and 95th percentiles of predicted 
concentrations for each model within each bin. 

 

  

Figure S9: Predictions by model and population density (E-US only). Boxplots show range of tract-
level model predictions (y-axis) as a function of the tract-level population density (x-axis), binned to 
equally space linear- (left) and log-space (right) bins (note: last bin contains remaining data). Horizontal 
bar shows the median, box shows the interquartile range, and vertical lines show the 5th and 95th percentiles 
of predicted concentrations for each model within each bin. 
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