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Transport Findings

Bike sharing systems (BSSs) are being deployed in many cities because of their
environmental, social, and health benefits. To maintain low rental costs,
rebalancing costs must be kept minimal. In this paper, we use BSS data collected
from the San Francisco Bay Area to build a Markov chain model for each bike
station. The models are then used to simulate the BSS to determine the optimal
station-specific initial number of bikes for a typical day to ensure that the
probability of the station becoming empty or full is minimal and hence
minimizing the rebalancing cost.

RESEARCH QUESTION AND HYPOTHESIS

Bike sharing systems (BSSs) suffer from a central recurring problem: imbalance.
Many bike stations become either empty or full during their daily operation.
We hypothesize that we can reduce the cost of balancing bike stations by
optimizing the number of bikes at each station at the start of the day, thus
reducing the need for a dynamic balancing system (Schuijbroek, Hampshire,
and van Hoeve 2017; Raviv and Kolka 2013; Lu 2016). We formulate our
hypothesis by modeling each station using a Markov chain.

METHODS AND DATA

This study uses Ford GoBike's BSS docking station data collected from August
2013 to August 2015 in the San Francisco Bay Area, as shown in Figure 1 (Bay
Area Bikeshare 2016). The data provide the number of bikes at each station in
one-minute intervals.

We used the discrete time-homogeneous Markov chain on a finite state space
to model the system. We defined the state space as being all the possible states a
station could be in. That is to say, if station s had Ny docks, then the number of

states for that station would be N5 + 1, where the "empty station” is counted
as one possible state.
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Figure 1: Locations of the 70 Stations Covering Five California Cities: San Francisco, Palo Alto, Mountain View,
Redwood City, and San Jose (Bay Area Bikeshare, 2016).

A matrix X 45 was constructed for each station, s € S, day of the week,
d € 7, and hour of the day, h € 24 (i.e., a total of $x7x24 X matrices were
constructed of size (INg + 1)x(IVs + 1)). Using a specific X matrix, the
transition frequency matrix was created by computing the elements f;;, where

i, €{1,...,Ns + 1}. The elements f;; represent the number of times a

transition occurred from state 7 to state j over a one-minute interval at a specific
station, for a specific day of the week, and within a specific hour of the day.
The transition probability matrix for a specific station, s, hour of the day, 4,

N3+ The calculated

X fis

transition matrices above are the one-step transition matrices for a specific
station, day of the week, and hour of the day. Each transition (i.e., the time tick)
is conducted per minute, making the movement between states as smooth as
possible throughout the hour.

and day of the week, d, was then computed as p;; =

The probability distribution of available bikes at the end of the day at a

particular station is shown in Equation 1.

P (xend of the day __ q’wstart of the day __ m)

last hour of the da;
start of the first hour __ m)) * Hh:2 y Ph

(P (xend of the first hour _ qlm
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Here, P}, is the 60-minute transition matrix obtained from simulating the
corresponding one-step transition matrix.

Equation 1 finds the probability distribution of the available bikes at the end of
the day given that the station started the day with 7 bikes. We count all possible
paths from 2 at the very first hour of the day to all possible values of 7z at
the end of the day. We use the corresponding transition matrix to simulate the
Markov chains in order to produce a probability distribution that describes the
likelihood of a particular state at the end of the hour. This leads to the creation
of a probability distribution of available bikes at the end of the first hour. After
that, we can use this probability distribution as the initial state probabilities for
the following hour and create the next probability distribution, which is the
next 60-step transition matrix. This procedure is repeated until we reach our
target hour and draw the final probability distribution as a function of each
initial condition.

When running the Markov chain, our objective function was to find the best
initial conditions to maximize the probability of the station operating at a bike-
to-capacity ratio (number of bikes relative to the capacity of the station) within
the range of 0.25 to 0.75 at the end of each hour, as shown in Equation 2.

24
max; »_ ;3 Wh Z;V;n%min Pijn (2)

where 7 is the initial condition of station s, h is the hour of the day (considered

only the hours from 6:00 a.m. to 8:00 p.m. in our case), W}, is the weight
assigned to hour h (assumed to be 1.0), j is the expected state of the station at
the end of the hour, Npin and Np,x are the upper and lower desired bounds

of the station status (in our case: Npin=0.25%(N; + 1) and Nyax=0.75x
(Ns + 1)), N is the capacity of station s, and P}y, is the probability of having

an % initial state and a resulting j state at the end of hour A.

FINDINGS

We used the BSS data to build the Markov chain for each station and day of the
week combination to investigate the daily imbalances and identify the optimal
inventory level that would minimize the probability of a station reaching an
empty or full state. When analyzing the results, we first looked at all 70 stations,
considering different initial conditions to identify stations that would benefit
most from optimizing the initial station state. We grouped stations into three
categories:

(1) Those that have an imbalance issue but a small probability (< 10%) for 25%
of the initial conditions;

(2) Those that have an imbalance issue with a medium probability (11% to
25%) for 25% to 45% of initial conditions; and
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Table 1: Percentage of Each Category for Each City

Category

(1) Imbalance (2) Imbalance (3) Imbalance

Git probability of <10% probability of 11-25% probability >25% for >45%
Y for 25% of initial for 25 to 45% of initial of the initial

conditions conditions conditions
San Jose 43.75 12.50 43.75
Redwood City 57.14 28.57 14.29
Mountain View 14.29 57.14 28.57
Palo Alto 80.00 20.00 0.00
San Francisco 0.00 20.00 80.00

(3) Those that have an imbalance issue with a large probability (>25%) for
>45% of the initial conditions.

In Table 1, we present each category's percentage separately by city, as a
previous study showed that there were close to no trips between the five cities
(Ashqar et al. 2017).

As shown in Table 1, San Francisco has the highest percentage of category
3 stations, followed by San Jose. This demonstrates that San Francisco BSSs
experience high bike demands, and thus are more likely to have an imbalance
problem during the day. Our proposed approach would be less effective for the
San Francisco BSSs and more effective for the other cities given that the daily
evolution of states for San Francisco varies considerably.

Our analysis shows that the optimal initial conditions vary from day to day at
the same station, and thus we present the optimal initial conditions for each
day of the week for one selected station in Mountain View and one in San
Francisco. Note that we made two assumptions when choosing the optimal
initial conditions: (1) the bikes are taken from an infinite pool, meaning we
have no constraints on the available inventory, and (2) there is no interaction
between stations. The optimal station state is assumed to occur when the
bike-to-capacity ratio ranges between 0.25 and 0.75 over the entire day, thus
minimizing the probability of reaching either an empty or full state. Table 2
presents the optimum three initial states for stations 26 and 59 that result in
the highest probability of maintaining a bike-to-capacity ratio ranging between
0.25 and 0.75 for the entire day. As was demonstrated earlier, the results of
Table 2 demonstrate that there is a lower probability of being able to maintain
the San Francisco station in the optimum range over the entire day, as was
discussed earlier.
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Table 2: The Optimal Initial Conditions for Stations 26 and 59*

Station #26 Mountain View Station #59 San Francisco

1st 2nd 3rd 1st 2nd 3rd
Saturday 6(0.74) 5(0.74) 7(0.74) 7(0.65) 8(0.63) 90.63
Sunday 6(0.74) 5(0.74) 4(0.73) 7(0.62) 8(0.62) 9(0.62)
Monday 4(0.70) 5(0.69) 3(0.69) 8(0.42) 9(0.42) 10(0.41)
Tuesday 4(0.71) 3(0.70) 5(0.70) 7(0.42) 8(0.41) 9(0.41)
Wednesday 5(0.71) 4(0.71) 6(0.69) 7(0.38) 9(0.37) 9(0.37)
Thursday 4(0.70) 5(0.70) 6(0.68) 7(0.42) 8(0.41) 9(0.41)
Friday 5(0.71) 4(0.70) 6(0.69) 7(0.42) 8(0.41) 10(0.41)

20ptimum number of initial bikes and probability of achieving the desired bike-to-capacity ratio.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CCBY-NC-4.0). View this license’s legal deed at https://creativecommons.org/
licenses/by-nc/4.0 and legal code at https://creativecommons.org/licenses/by-nc/4.0/legalcode for more
information.
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