

TRANSPORT FINDINGS

Distributions of Bus Stop Spacings in the United States

Ayush Pandey¹ , Lewis Lehe¹ , Dana Monzer¹ ¹ Civil and Environmental Engineering, University of Illinois Urbana-Champaign Keywords: stop spacing, bus stop, transit, bus, public transportation https://doi.org/10.32866/001c.27373

Findings

This article introduces a database of bus stop spacings for 43 cities in the United States derived from GTFS files published in late 2019. Weighting each spacing by the number of times a bus traverses it, we produce distributions and summary statistics. The overall mean spacing is 313 meters. Las Vegas' RTC has the widest mean spacing (482 m) and Philadelphia's SEPTA the narrowest (214 m). We also compare spacings within agencies' "core" cities to those outside.

1. Questions

Bus stop spacing refers to the distance that a bus travels from one stop to the next. Much theoretical analysis has focused on the choice of bus stop spacing (see extensive discussions in Daganzo and Ouyang 2019), which impacts how much time is spent braking and accelerating at stops as well as walking distances. Still, there is little hard data available as to what stop spacings actually are in the United States. One refrain in the literature is that US cities commonly have seven to ten bus stops per mile (Furth and Rahbee 2000; El-Geneidy et al. 2006). The source for this claim can be traced to Reilly (1997, 4), who says "It is common European practice to have stops spaced at 3 or 4 per mile in contrast with 7 to 10 stops per mile, which is common in the United States," though the study does not cite a particular source for this fact.

This study uses General Transit Feed Specification (GTFS) (Wong 2013) data published by 43 US transit agencies to build a dataset of stop spacings, available at Pandey and Lehe (2021a), in which each row represents one traversal of a spacing. By "traversal" we mean one instance of a bus traveling from one stop to the next stop on the trip. The GTFS files were all published in late 2019—before the service changes wrought by COVID-19. This article introduces the dataset, defines terms and answers some questions using the database:

- 1. What are the summary statistics?
- 2. How do the distributions of stop spacings look?
- 3. How do mean stop spacings differ inside and outside of the "core" cities served by an agency?

2. Methods

2.1. Definitions

We define *stop spacing* as the distance between two stops *along the route of the bus*. It includes the distance traveled along any bends in the road.

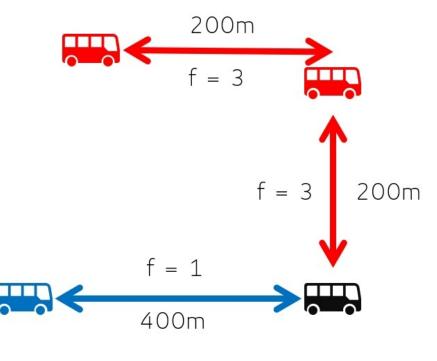


Figure 1. Example Transit Network

For distributions and summary statistics of stop spacings, we apply what we call *traversal weighting*: that is, if the schedule has buses move directly from stop A to stop B 100 times before the schedule repeats, then that spacing is counted 100 times.

To illustrate, consider the simple bus system shown in Figure 1, which shows a network with two routes and three stops. The blue route has two stops spaced 400 m apart and a frequency of 1. The red route has three stops, spaced 200 m apart, and a frequency of 3. The traversal-weighted mean stop spacing for the network in Figure 1 is

$$\frac{400 + 200 \cdot 3 + 200 \cdot 3}{1 + 3 \cdot 2} = 228.57 \quad (m). \tag{1}$$

If an omnipresent driver were to drive every bus, this is the mean distance he or she would travel between stops on this network.

2.2. Calculation

Pereira, Andrade, and Bazzo (2020) introduces an R-package, *gtfs2gps*, which converts GTFS files to a database in which each row describes the location of a vehicle on a scheduled trip at a point along its route—including at all stops. One piece of data in each row is the cumulative distance that the vehicle has traveled since the start of the current trip. We use this database to produce another database, akin to the one in <u>Table 1</u>, in which each row represents

Table 1. Representative Database

spacing	loc1	loc2			
:	:	÷			
x_i	$(lat_1, lng_1)_i$	$(lat_2, lng_2)_i$			
x_{i+1}	$(lat_1, lng_1)_{i+1}$	$(lat_2, lng_2)_{i+1}$			
:	:	:			

one traversal, giving the distance traveled between the traversal's two stops and their locations. Example code doing so for Ann Arbor is at Pandey and Lehe (2021b).

The general procedure is as follows: First, starting with the initial database produced by *gtfs2gps*, we filter out all non-bus trips and all rows that do not correspond to a location at a stop, so that the database only contains information about buses when they are at stops. Next, for each stop along each trip, we subtract the cumulative distance traveled (from the start of the trip) when the bus is at the preceding stop from the cumulative distance traveled at the given stop, which gives the distance traveled between the stops. This difference is stored as a row in the new database along with both stops' coordinates, and the database is made available at Pandey and Lehe (2021a).

3. Findings

We apply the method described in Sec. 2.2 to 43 US cities. The sample includes the six most populated US cities as well as many smaller cities chosen to capture a diversity of city types and regions. The only systematic requirement for inclusion was that a city's GTFS files be sufficiently "filled in" for *gtfs2gps* to convert the GTFS files to a GPS database. To run gtfs2gps requires that a GTFS bundle includes certain files: the optional 'shapes.txt' file and either the optional 'frequency.txt' or certain optional columns in the required 'stop_times.txt' file, so it cannot run when agencies do not include some optional data. The particular agency corresponding to each city¹ is listed in <u>Table 2</u>.

¹ Seattle's GTFS files combine several agencies' data: ST - Sound Transit; KCM - King County Metro; CT - Community Transit; KT - Kitsap Transit; PT - Pierce Transit; AT - Access Transportation; DCB - Downtown Circulator Bus

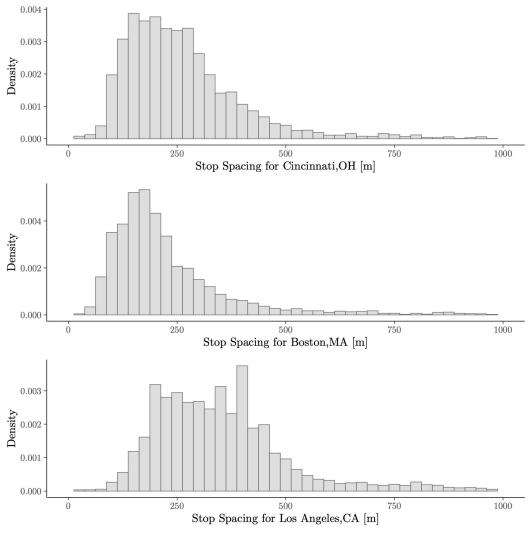
Table 2. Summary Statistics (traversal-weighted) for stop spacing (in [m]) in US cities

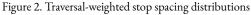
City	Agency	Mean	Std. Deviation	Q25	Median	Q75	Core Mean	ExCore Mean
Ann Arbor	Ann Arbor Area Transportation Authority	383	213	245	325	443	353	438
Bloomington	Bloomington Transit	321	199	193	271	387	322	311
Boston	Cape Cod Regional Transit Authority	283	206	174	234	323	288	280
Buffalo	Niagara Frontier Transportation Authority	262	199	170	218	289	224	328
Charlotte	Charlotte Area Transit System	393	282	228	320	455	382	530
Chicago	Chicago Transit Authority	223	114	176	205	240	223	236
Cincinnati	Southwest Ohio Regional Transit Authority	279	210	167	237	320	265	329
Cleveland	Greater Cleveland Regional Transit Authority	275	185	188	243	317	263	289
Columbus	Central Ohio Transit Authority	369	229	240	317	420	357	423
Dallas	Dallas Area Rapid Transit	300	250	176	242	342	283	372
Denver	Regional Transportation District, America/Denver	408	275	261	353	451	373	433
Des Moines	Des Moines Area Regional Transit Authority	273	188	177	227	305	247	445
Detroit	Detroit Department of Transportation	258	159	182	222	292	245	363
El Paso	Sun Metro	415	342	232	312	459	413	497
Fresno	Fresno Public Transportation (FAX)	392	220	264	358	450	389	413
Gainesville	Regional Transit System	263	122	185	231	295	263	NA
Houston	Metropolitan Transit Authority of Harris County	306	187	198	256	357	300	378
Indianapolis	Indianapolis Public Transportation Corporation	333	233	196	264	389	331	356
Jacksonville	Jacksonville Transportation Authority	450	387	245	341	497	448	520
Kansas City	Kansas City Area Transportation Authority	355	278	199	273	411	329	437
Los Angeles	Los Angeles County Metropolitan Transportation Authority	402	294	243	341	434	392	418
Las Vegas	Regional Transportation Commission of Southern Nevada	482	225	362	425	529	462	491
Memphis	Memphis Area Transit Authority	280	246	147	214	328	278	408
Miami	Miami-Dade Transit	349	297	192	260	388	288	372
Milwaukee	Milwaukee County Transit System	278	175	185	232	354	269	299
Minneapolis	Metro Transit	279	212	192	209	300	261	292
New York	Metropolitan Transportation Authority Bus Company	328	283	178	240	353	327	448
Oakland	AC Transit	344	236	207	283	400	306	371
Omaha	Metro Transit	246	149	172	213	275	246	394
Orlando	Central Florida Regional Transit Authority	401	290	231	325	465	334	438
Philadelphia	Southeastern Pennsylvania Transportation Authority	214	179	137	172	227	186	318
Phoenix	Valley Metro	446	241	332	402	477	425	469
Pittsburgh	Port Authority of Allegheny County	268	276	143	190	277	235	319
Portland	TRIMET	314	196	204	268	361	292	357
Providence	Rhode Island Public Transit Authority	336	250	201	275	380	296	358
Salt Lake City	Utah Transit Authority	374	285	215	291	428	328	392

City	Agency	Mean	Std. Deviation	Q25	Median	Q75	Core Mean	ExCore Mean
San Antonio	VIA Metropolitan Transit	338	272	201	257	373	327	481
Seattle	ST, KCM, CT, KT, PT, AT, DCB	403	261	250	350	455	359	467
San Francisco	San Francisco Municipal Transportation Agency	248	174	165	210	286	245	509
St. Louis	Metro St. Louis	316	234	184	262	372	289	334
Tampa	Hillsborough Area Regional Transit	392	282	220	324	457	347	468
Tucson	SunTran	443	252	326	399	473	427	558
Tulsa	Metropolitan Tulsa Transit Authority	382	364	192	271	438	375	766

Table 3. Bus stops per mile translated into spacings

stops/mile	stop spacing (meters)
10	161
7	230
4	402
3	536
	000


The database can be put to several uses. One is to compare summary statistics. (To aid comparison, <u>Table 3</u> translates into meters the 3, 7, 4 and 10 stops per mile mentioned in Reilly 1997.) Summary statistics appear in <u>Table 2</u>, where Q25 and Q75 refer to the 25th and 75th percentile, respectively. The Southeastern Pennsylvania Transportation Authority in Philadelphia has the narrowest mean stop spacing of 223 m, while Las Vegas' Regional Transportation Commission of Southern Nevada the widest at 446 m. The mean spacing across the whole dataset is 313 m, which amounts to slightly more than 5 stops per mile.


Alternatively, we can also visualize distributions of spacings. Figure 2 shows histograms of the stop spacing distributions for Cincinnati, Boston, and Los Angeles. Note that Boston's spacings are distributed more tightly than those of Los Angeles.

The database can also be combined with geographic data, since we include the locations of both stops in each spacing. As a simple illustration, we use city boundary shapefiles downloaded from Centers for Disease Control and Prevention (2020) to calculate the mean spacing inside and outside each agency's "core" city, which we define to be the most populated city that the agency serves. If both stops involved in a traversal fall within the core city, we classify the traversal as being inside the core. The last two columns of <u>Table</u> 2 list the resulting means, and <u>Figure 3</u> visualizes them. Note several facts. First, spacings are generally larger than 7 per mile, and in some cities within the band of 3 to 4 stops per mile claimed to be typical of European cities. Second, stop spacings are larger outside than inside core cities. Third, cities mostly established *before* the automobile era (e.g., Cleveland) have relatively smaller spacings.

This exercise also demonstrates why it is critical for comparisons to be clear about sourcing. For instance, Chicago's suburban communities are mainly served by PACE Suburban Bus, but our dataset for Chicago comes from the Chicago-focused CTA; hence, the spacing inside and outside the core are similar.

The authors hope the dataset and code provided can serve many purposes. US agencies have tried to consolidate bus stops—e.g., Pittsburgh most recently (Blazina 2020)—and decision-makers might benefit from knowing how their

cities' spacings compare. Similar data could also be collected for cities in other countries. Spacings may also be classified by census tract to answer questions such as: does stop spacing decline with population and/or job density? It may also be worthwhile for researchers to write code targeted more efficiently at studying stop spacings than *gtfs2gps* is.

Submitted: July 09, 2021 AEST, Accepted: August 12, 2021 AEST

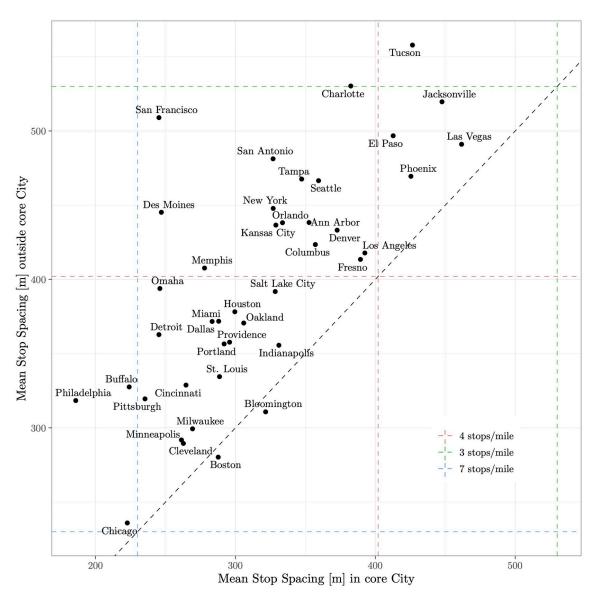


Figure 3. Average Stop Spacing inside and outside core city

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CCBY-SA-4.0). View this license's legal deed at https://creativecommons.org/licenses/by-sa/4.0/legalcode for more information.

REFERENCES

- Blazina, Ed. 2020. "Port Authority's Initial Bus Stop Eliminations Showing on-Time Improvements." *Pittsburgh Post-Gazette*, February 23, 2020. <u>https://www.post-gazette.com/news/transportation/</u>2020/02/23/Port-Authority-bus-stops-on-time-performance-improvements-efficiency-transit/ stories/202002230032.
- Centers for Disease Control and Prevention. 2020. "500 Cities: City Boundaries." https://chronicdata.cdc.gov/500-Cities-Places/500-Cities-City-Boundaries/n44h-hy2j/.
- Daganzo, Carlos F, and Yanfeng Ouyang. 2019. *Public Transportation Systems*. WORLD SCIENTIFIC. <u>https://doi.org/10.1142/10553</u>.
- El-Geneidy, Ahmed M., James G. Strathman, Thomas J. Kimpel, and David T. Crout. 2006. "Effects of Bus Stop Consolidation on Passenger Activity and Transit Operations." *Transportation Research Record*, no. 1971: 32–41. <u>https://doi.org/10.3141/1971-06</u>.
- Furth, Peter G, and Adam B Rahbee. 2000. "Dynamic Programming and Geographic Modeling." *Transportation Research Record: Journal of the Transportation* 00–0870 (00): 15–22.
- Pandey, Ayush, and Lewis Lehe. 2021a. "Replication Data for: Distributions of Bus Stop Spacings in the United States." Harvard Dataverse. <u>https://doi.org/10.7910/DVN/AKDQIQ</u>.

-----. 2021b. Stop Spacing Database Code. GitHub.

- Pereira, Rafael H. M., Pedro R. Andrade, and Joao Bazzo. 2020. *Gtfs2gps: Converting Transport Data from GTFS Format to GPS-Like Records. R Package Version 1.0-5*. Vienna: R Found. Stat. Comput. https://CRAN.R-project.org/package=gtfs2gps.
- Reilly, Jack M. 1997. "Transit Service Design and Operation Practices in Western European Countries." *Transportation Research Record: Journal of the Transportation Research Board* 1604 (1): 3–8. <u>https://doi.org/10.3141/1604-01</u>.
- Wong, James. 2013. "Leveraging the General Transit Feed Specification for Efficient Transit Analysis." *Transportation Research Record*, no. 2338 (January): 11–19. <u>https://doi.org/10.3141/2338-02</u>.