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Supplemental Information

Data and variables
Multimodal traffic volumes

Automobile traffic volume counts on various streets and highways were taken from continuous
count stations (CCSs) maintained by the Utah Department of Transportation (UDOT). The
stations record the number of cars, trucks, etc. crossing a given station by using sensor devices
such as inductive loops and overhead microwave radar sensors. The UDOT counts provide the
number of vehicles crossing each location per day for CCSs distributed throughout Utah. There
were only six count stations located in Cache County which could be selected for the analysis.
The data cover a two-year period from January 2018 through December 2019. To avoid
complicating the analysis, this work does not consider the impacts of the COVID-19 pandemic.

Pedestrian traffic volumes came from a novel big data source: pedestrian push-button data
obtained from high-resolution traffic signal controller logs. In the US, many if not most
intersection traffic signals include push-button activated pedestrian detectors. In Utah, such real-
time and archived data on pedestrian push-button presses are available from nearly all (2,000+)
traffic signals throughout the state (UDOT, 2023). While not a perfect measurement of
pedestrian activity—one person can press multiple times, or one person can press for a group of
people—a recent research project found that push-button data could be successfully used to
estimate pedestrian crossing volumes (Singleton et al., 2020). Those authors compared push-
button data with ground-truth pedestrian volumes collected from over 10,000 hours of video at
90 signalized intersections throughout Utah, and developed a set of simple regression models to
convert push-button data to estimated pedestrian crossing volumes. One successful technique
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was to ignore button-presses that occurred within 15 seconds of a previous button-press, to avoid
over-counting multiple-press behaviors. Details of these prediction methods are provided
elsewhere (Runa & Singleton, 2021), but the methods had good accuracy (correlation of 0.84
between observed and predicted volumes, mean error of £3.0 pedestrians per hour). For this
project, we used daily estimates of pedestrian volumes at 39 signals in/near Logan, the major city
in Cache County, for the same two-year time period.

Bus ridership data were obtained from the public transportation service provider operating in the
study area. The Cache Valley Transit District (CVTD) provided the total daily bus ridership
(boardings) across all of their bus routes for each day throughout the study period. There is no
rail-based public transportation service in Cache County, and no service on Sundays.
Unfortunately, stop-level boarding data were not available from the agency. Therefore, it is
important to note that the public transportation data has a different structure than the
automobile/pedestrian data, as it captures the area-wide bus ridership rather than any stop- or
route-specific ridership.

While the decision to use system-level transit ridership was largely the result of data limitations,
we also did this because route-level or even stop-level public transportation data is conceptually
slightly different than the automobile/pedestrian data used to analyze those modes. Automobile
traffic volumes count every automobile trip passing that location, and pedestrian traffic volumes
estimate (approximately) every person crossing the street at that intersection. In contrast, stop-
level boarding and alighting data would only capture the trips starting or ending near that
particular stop. Route-level ridership data would count trips that started/ended anywhere along
that route, complicating and potentially obscuring spatial details. Thus, to maintain clarity and
avoid any inconsistency in data used for analysis across each mode (and due to data limitations),
we opted to use system-wide bus ridership data. We acknowledge that doing this prevented us
from studying locational variations in the effect of air pollution on bus use, and thus answering
our second research objective for this mode.

Air pollution, weather, and temporal control variables

Daily air quality information (air quality index, based on concentrations of particulate matter)
was collected from sensors and was obtained from the US Environmental Protection Agency
(EPA). In 2012, the Utah Division of Air Quality (UDAQ) revamped its air quality
categorization in line with the EPA standard and created six color-coded categories. The Air
Quality Index (AQI) is representative of the pollution due to ozone, particulate matter, and
oxides of nitrogen, sulfur, and carbon. The categories are described in Table SI-1. In Utah, news
reports, air quality apps, and recommended government actions all utilize these AQI categories
and colors (US EPA, n.d.; Utah DEQ, 2022; UDOT, 2022; Williams, 2023). For our study, PM> s
data from a monitoring station in Smithfield (a suburb of Logan) was used. During the study
period, the highest daily AQI value was 140, so only three-color categories (green, yellow, and
orange) were considered in our analysis.
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Table SI-1: Air Quality Index (AQI) (US EPA, n.d.)

Color AOI range Health concern Description

Yellow  51-100 Moderate Air quality is acceptable. However, there may be a risk for some
people, particularly those who are unusually sensitive to air pollution.

Purple  201-300 Very Unhealthy Health alert: The risk of health effects is increased for everyone.
Maroon 301-500 Hazardous Health warning of emergency conditions: everyone is more likely to
be affected.

To control for atmospheric environmental impacts on multimodal traffic volumes (thus helping
to isolate the unique influence of air pollution), daily weather data about precipitation, snow,
temperature, etc. were obtained from the National Oceanic and Atmospheric Administration’s
National Centers for Environmental Information (NCEI). Specifically, weather data for all
signals were obtained from the weather station (USC00425186) located at Utah State University
in Logan. The station reported daily precipitation (in mm), snowfall (in mm), and maximum and
minimum temperature (in °C). Since precipitation included a mix of all kinds of precipitation
(rain and snow), a combined precipitation variable was created with the following categories: no
rain and no snow, light rain (1-25mm), light snow (1-50mm), heavy rain (>25mm), and heavy
snow (>50mm). Also, from a nearby weather station (USW00094128) located at the Logan—
Cache Airport, a dataset containing historical temperature for the last 30 years was obtained. A
maximum temperature difference variable was created as a measure of how hot a day was
compared to the 30-year average temperature on the same day.

Besides the weather controls, three additional control variables were introduced to account for
temporal variations in multimodal traffic volumes. A seasonal categorical variable was created
which distributed the 12 months into four seasons. Days of the week were categorized into
Saturday, Sunday, and weekdays to control for the effects of weekends on traffic. Also, holidays
in the state of Utah during the study period were identified (Office Holidays, n.d.). We checked
the day-of-week distributions of multimodal traffic volumes, and volumes tended to be much
more consistent within weekdays than they were for Saturdays, Sundays, and holidays; therefore,
we did not split out, for example, Monday and Friday from Tuesday, Wednesday, and Thursday.

Count station-level variables

In order to measure variations in the air quality—traffic volume relationship across locations, we
also collected built and sociodemographic environment variables at each pedestrian and
automobile traffic volume location. A quarter-mile buffer was created around each location. This
buffer radius was a subjective decision by the authors, but was informed by research on the built
environment influences of walking (Ewing & Clemente, 2013); a quarter-mile buffer was also
used in two recent pedestrian-related studies in Utah (Park et al., 2023; Singleton et al., 2021).
Information regarding population and employment density, commercial and residential land uses,
bus stops, park coverage, and schools were calculated from the EPA’s Smart Location Database.
Similarly, sociodemographic attributes, including median household income and mean car
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ownership, were obtained from the American Community Survey (ACS) 2013-2017 and
processed using the quarter-mile buffers.

Descriptive statistics of the variables in the compiled data are shown in Table SI-2. Note that the
table only reports the built and sociodemographic environment for the 39 pedestrian count
locations, since the subsequent analysis (see Results) found no locational variations in
relationships for automobile traffic count stations. Remember, bus ridership was measured
system-wide, not for particular locations.

Table SI-2: Explanation of the variables and descriptive statistics

Variable Mean SD # %
Multimodal traffic volumes
Pedestrian traffic volumes 379 1,033
(N=127,157 =39 locations x 730 days — missing data)
Automobile traffic volumes 12,489 8,410
(N = 3,987 = 6 stations x 730 days — missing data)
Bus ridership 4,708 1,991

(N =608 =1 system x 730 days — Sundays — missing data)
Temporal variables (730 days)

Day of Week: Weekday 522 71.5
Saturday 104 142
Sunday 104 14.2

Holiday: False 706 96.7
True 24 33

Season: Winter 180 24.7
Spring 184 252
Summer 184 252
Fall 182 249

Precipitation: No rain / no snow 532 73.0
Light rain (1-25mm) 117 16.0
Heavy rain (>25mm) 2 03
Light snow (1-50mm) 57 7.8
Heavy snow (>50mm) 21 2.9

Max temperature (°C) difference from average 0.04 4.73

Air quality index: Green (AQI = 0-50) 626 85.7
Yellow (AQI = 51-100) 88 12.1
Orange (AQI =101-150) 16 22

Built and social environment variables
(39 pedestrian volume locations, “:-mile buffer)

Percentage of residential parcels 20.0 13.3
Percentage of commercial parcels 33.1 17.1
Percentage of vacant land 6.6 4.0
Population density (1,000 people/mi?) 5.0 2.1
Employment density (1,000 jobs/mi?) 9.5 6.3
Intersection density (#/mi?) 88.0  37.1
% 4-way intersections 44.6 214
Number of bus stops 6.1 3.7
Number of schools 0.2 0.5
Park acreage 1.1 2.8
Household income (median, $1,000) 37.4 9.0
Car ownership (mean) 1.6 0.3
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Analysis methods

Since the dataset for multimodal traffic volumes covered multiple locations and across a span of
two years, multilevel modeling was an appropriate approach for our analysis. Multilevel models
can adequately represent the two-level nature of our data: daily traffic volumes Y;; (level one),
nested within locations (level two). Such models also allow clear specifications of variations in
model coefficients at level one (across level two units j), including fixed and random intercepts
(Boj), slopes (Brj) for h level-one variables (x;;), and cross-level interactions in which level-two
variables (z;) affect level-one slopes. In other words, multilevel models can represent variations
in the air quality—traffic volume relationship (slope) across locations and due to locational
characteristics. A simple multilevel model with level-one residuals R;; is represented in the
following Eq. 1:

Yij = Boj + B1jxij + Ryj (1)

In line with the first study objective—to examine the relationship between air quality and traffic
volume for each mode—we estimated separate multilevel models for automobile traffic volumes
and for pedestrian volumes. Dependent variables (Y;;) were the natural log of the daily traffic
volume, and independent (level one) variables (xp;;) were daily air quality, weather, and
temporal controls. Different specifications for air quality were considered, but the best-fitting
and most intuitive results were found for dummy variables representing the green, yellow, and
orange AQI categories (Table SI-1). For both modes, we allowed the intercept (but not the
slopes) to vary across locations. For pedestrian volumes (39 locations), we used a random effects
intercept model (Eq. 2), in which the intercept coefficient varied randomly following a normal
distribution for level-two residuals U ;. For automobile traffic volumes (6 locations), the few
sites meant we used a fixed effects intercept model (Eq. 3), in which a different intercept
coefficient was estimated for each station k.

Yij = Boj + Xn Brxnij + Rij (2a), where
Boj = Yoo + Uy (2b).

Yij = Boj + Xn Brxnij + Rij (3a), where
Boj = X Yor Dk (3b), and

D, is a dummy variable equal to 1 for station k and 0 otherwise.

To address the study’s second objective—exploring variations across locations in the effect of
area-wide air pollution on multimodal traffic volumes—we first modified the first objective
models and allowed slopes for the air quality dummy variables to vary across count stations.
Again, for pedestrian volumes, this was a random effects slope model (Eq. 4), in which the
random coefficients were normally distributed; for automobile traffic volumes, this was a fixed
effects slope model (Eq. 5), in which different coefficients were estimated for each station. If the
slopes were found to vary across locations—measured using likelihood-ratio tests versus the
models for the first objective—we then tested whether g level-two location characteristics (24 )
were significant in predicting the intercept and air quality slope variations across locations. In the
terminology of multilevel modeling, these effects are called cross-level interactions (y4p),
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because they result in an interaction of a level-two variable (built or social environment) with a
level-one variable (air quality). Only variables with significant interaction coefficients were
retained in the final models.

Yij = Boj + Xn BnjXnij + Rij (4a), where
Boj =Yoo + XgVgoZgj + Uoj (4b), and
Bnj =Vno + LgVgnZgj + Unj (4¢).

Yij = Boj + Xn Bnjxnij + Rij (5a), where
Boj = Lk YorDi (5b),

Brj = Xk YniDx (5¢), and

Dy is a dummy variable equal to 1 for station k and 0 otherwise.

For bus ridership, in line with the first objective to examine the relationship of air quality and
traffic volumes, we estimated a simple linear regression model as represented by Eq. 6. The
dependent variable (Y;;) was the natural log of the daily total system-wide bus ridership, and the
independent variables (x;) were air quality, weather, and temporal controls. Because of the
nature of the public transportation data (system-wide, not location-specific), we could not
address the study’s second objective for bus ridership.

Y = Bo+ B1x; + R; (6)

Model estimation was performed using the “lme4” package (Bates et al., 2015) in R (The R
Foundation, n.d.).

Results

Pedestrian volumes

Table SI-3 reports the results of the random intercept model for pedestrian volumes. The
coefficient estimates for both the yellow (5 =-0.053, SE=0.011,1=-4.916, p =<0.001) and
orange air quality days (f =-0.136, SE = 0.023, t =-5.929, p = <0.001) were negative and

significant. This implies that pedestrian volumes decreased during episodes of poor air quality
(compared to green days), especially on orange days (unhealthy for sensitive groups).
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Table SI-3: Random intercept model for pedestrian volumes

Coefficients Estimate SE df  t-statistic  p-value
Intercept 5.092  0.157 38.23 32.356  <0.001
Day of week (ref. = Weekday)

Saturday -0.366  0.009 27110 -38.513  <0.001

Sunday -1.020  0.009 27110  -107.919  <0.001
Holiday (ref. = No holiday) -0.914 0.019 27110 -49.317  <0.001
Season (ref. = Winter)

Spring 0.266 0.011 27110 24874  <0.001

Summer 0.373  0.010 27110 36.192 <0.001

Fall 0.361 0.011 27110 34.074  <0.001
Precipitation (ref. = No rain / no snow)

Light rain -0.060  0.009 27110 -6.293  <0.001

Heavy rain -0.157  0.062 27110 -2.521 0.012

Light snow -0.259 0.013 27110 -19.657  <0.001

Heavy snow -0.341  0.020 27110 -16.968  <0.001
Max temperature difference from average 0.007 0.001 27110 9411 <0.001
Air quality index (ref. = Green)

Yellow (AQI = 51-100) -0.053  0.011 27110 -4916  <0.001

Orange (AQI =101-150) -0.136  0.023 27110 -5.929  <0.001

Notes: N =27,157; # groups = 39; log-likelihood = -21,661; between-group variance = 0.963;
residual variance = 0.286.

Table SI-4 reports the results of the random intercept and random slope model for pedestrian
volumes. By estimating an earlier model (not shown), we found that there were significant
random slopes for the air quality variables: a likelihood-ratio test found that the random intercept
and slope model (log-likelihood = -21,656) was (marginally) significantly (y*> = 9.924, df=5,p =
0.077) better fitting than the random intercept only model (log-likelihood = -21,661). Therefore,
we estimated several models, each testing cross-level interactions with air quality involving built
and social environment variables. As shown in Table SI-4, there were significant interaction
effects for three variables: the percentage of commercial parcels, the percentage of 4-way
intersections and average car ownership. For the commercial land use variable, there was a
positive and significant interaction term with yellow days (f = 0.001, SE =0.001, t=2.072, p =
0.042) but not orange days. This implies that the negative effect of yellow air quality days on
pedestrian volumes was attenuated in places with more commercial land uses. For the
intersection variable, there was a positive and significant interaction term with orange days ( =
0.003, SE=0.001, r=2.004, p = 0.050) but not yellow days. This implies that the negative effect
of orange air quality days on pedestrian volumes (see Table SI-3) was attenuated in places with a
greater share of 4-way intersections. For the car ownership variable, there was a negative and
marginally significant interaction term with yellow days (8 =-0.076, SE = 0.040, t =-1,935, p =
0.057). This implies that the negative effect of yellow air quality days on pedestrian volumes
(see Table SI-3) was enhanced in places with greater average household car ownership.
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Table SI-4: Random intercept and random slope model for pedestrian volumes

Coefficients Estimate SE df t-statistic  p-value
Intercept -0.105  1.207 33.02 -0.087 0.931
Day of week (ref. = Weekday)

Saturday -0.366  0.009 27070 -38.534  <0.001

Sunday -1.020  0.009 27060 -107.983  <0.001
Holiday (ref. = No holiday) -0.914 0.019 27060 -49.341  <0.001
Season (ref. = Winter)

Spring 0.266 0.011 27070 24.897  <0.001

Summer 0.373  0.010 27070 36.218  <0.001

Fall 0.361 0.011 27070 34.095 <0.001
Precipitation (ref. = No rain / no snow)

Light rain -0.060  0.009 27060 -6.304  <0.001

Heavy rain -0.157  0.062 27060 -2.525 0.012

Light snow -0.260 0.013 27060 -19.678  <0.001

Heavy snow -0.341  0.020 27060 -16.976  <0.001
Max temperature difference from average 0.007 0.001 27070 9.417 <0.001
Air quality index (ref. = Green)

Yellow (AQI = 51-100) 0.008 0.087 69.73 0.096 0.924

Orange (AQI =101-150) -0.170  0.195 54.95 -0.871 0.387
Built and social environment variables
Percentage of commercial parcels 0.007  0.007 32.15 0.877 0.387
Population density (1,000 people/mi?) 0.322  0.071 29.76 4.532  <0.001
Intersection density (#/mi%) 0.008 0.004 30.03 2.029 0.051
% 4-way intersections 0.003  0.007 33.00 0.388 0.700
Number of bus stops 0.080 0.035 29.65 2.253 0.032
Number of schools -0.496 0.229 29.92 -2.172 0.038
Household income (median, $1,000) 0.049 0.016 30.00 3.037 0.005
Car ownership (mean) 0.239 0411 31.42 0.582 0.564
Cross-level interactions
Yellow AQI with % commercial parcels 0.001 0.001 71.71 2.072 0.042
Orange AQI with % commercial parcels 0.002  0.002 55.14 1.311 0.195
Yellow AQI with % 4-way intersections 0.000 0.001 69.94 0.606 0.546
Orange AQI with % 4-way intersections 0.003  0.001 54.63 2.004 0.050
Yellow AQI with Car ownership -0.076  0.040 70.24 -1.935 0.057
Orange AQI with Car ownership -0.091  0.089 56.87 -1.020 0.312

Notes: N =27,157; # groups = 39; log-likelihood = -21,622; between-group variance = 0.408;
residual variance = 0.285; random coefficient variance for yellow AQI = 0.001; random coefficient
variance for orange AQI = 0.005.

Because cross-level interaction terms are difficult to interpret in any type of regression model
and even more difficult when they affect random slope coefficients, we also calculated what are
called “posterior slopes” (Snijders & Bosker, 2015). Since the random air quality coefficients are
not estimated by the model (just their mean and standard deviation), we used empirical Bayes
estimation to let the model and data give us the “best” estimate of each location’s slope
coefficients. See a multilevel modeling textbook (Snijders & Bosker, 2015) for details on this
calculation. Since the air quality coefficients were also interacted with built and social
environment variables, we then multiplied each location’s values for these level-two variables
with their respective coefficients, and added them to the random portion obtained through
empirical Bayes estimation to get the total value of the posterior slopes for yellow and orange air
quality days (vs. green days).
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Figure SI-1 plots these posterior slopes, first in a scatterplot (yellow vs. orange) and second in a
combined plot vs. AQI. The left portion of the figure shows how most locations had a more
negative orange coefficient than yellow coefficient (below the diagonal in the lower left
quadrant), and how the posterior slopes were positively correlated (which is expected, since they
are both conditional on the same data at each location). The right portion of the figure shows
how air quality coefficients in the orange range (AQI = 101-150) are typically more extreme
(mostly more negative) than coefficients in the yellow range (AQI = 51-100). In both portions of
Figure SI-1, it appears that only a couple of locations had positive coefficients for yellow or
orange AQI.

Scatterplot of posterior slopes Plot of posterior slopes vs. AQl
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Figure SI-1: Figures showing posterior slopes for pedestrian volumes for yellow (AQI = 51—
100) and orange (AQI = 101-150) air quality levels (left: scatterplot; right: plot vs. AQI).

Automobile traffic volumes

Table SI-5 reports the results of the fixed intercept model for automobile traffic volumes. One of
the air quality variables (orange) was positively and significantly associated with automobile
traffic volumes (5 = 0.049, SE = 0.015, ¢ =3.333, p = 0.001). The positive association implies
that driving increased during unhealthy (orange) air quality days when compared to days with
good (green) air quality. The coefficient for yellow air quality was not significantly different
from zero, implying no detectable difference in automobile traffic volumes on yellow (moderate)
versus green air quality days.
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Table SI-5: Fixed intercept model for automobile traffic volumes

Coefficient Estimate SE  t-statistic  p-value
Intercept (station 301) 9.060 0.008 1207.460 <0.001
Difference for station 363 1.084 0.007 147.750  <0.001
Difference for station 510 -0.663  0.007 -91.996  <0.001
Difference for station 511 -0.400  0.007 -55.207  <0.001
Difference for station 620 0.219  0.007 29.726  <0.001
Difference for station 622 0.946 0.007 129.548  <0.001
Day of week (ref. = Weekday)
Saturday -0.122  0.006 -19.753  <0.001
Sunday -0.614  0.006 -98.842  <0.001
Holiday (ref. = No holiday) -0.320 0.012 -27.073  <0.001
Season (ref. = Winter)
Spring 0.097  0.007 14.267  <0.001
Summer 0.135  0.007 19.693  <0.001
Fall 0.109  0.007 16.172  <0.001
Precipitation (ref. = No rain / no snow)
Light rain -0.021  0.006 -3.367 0.001
Heavy rain -0.024  0.039 -0.620 0.535
Light snow -0.062  0.008 -7.399  <0.001
Heavy snow -0.123  0.013 -9.742  <0.001
Max temperature difference from average 0.000  0.000 0.348 0.728
Air quality index (ref. = Green)
Yellow (AQI = 51-100) -0.003  0.007 -0.474 0.636
Orange (AQI =101-150) 0.049  0.015 3.333 0.001

Notes: N = 3,987; adjusted R-squared = 0.963.

It is possible that some of the positive association between air quality category and automobile
traffic volumes that we found in Table SI-5 could be the result of a different cause-and-effect
relationship. Specifically, more driving could cause worse air pollution. (Thanks to a reviewer
for emphasizing this possibility.) Although our analysis did not test this opposite direction of
causality, future work should examine these inter-dependent relationships using more temporally
fine-grained data and/or dynamic models with time lags. Nevertheless, we suspect that the share
of the measured association (Table SI-5) due to this explanation is likely small, because air
pollution is affected by many factors beyond transportation emissions (including wildfire smoke,
agricultural emissions, and atmospheric conditions like temperature inversions).

Table SI-6 reports the results of the fixed intercept and fixed slope model for automobile traffic
volumes, which involved interaction terms included between the air quality categories and each
station. None of the air quality—station interaction terms were significant (p > 0.10), which
implies that there was no significant difference in the relationship between air quality and
automobile traffic volumes across the six count stations. Because no significant slope variation
was detected, we did not estimate a subsequent model to predict this variation from built and
social environment variables.
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Table SI-6: Fixed intercept and fixed slope model for automobile traffic volumes

Coefficients Estimate SE  t-statistic  p-value
Intercept (Station 301) 9.060 0.008 1170.678 <0.001
Difference for Station 363 1.084 0.008 136.704  <0.001
Difference for Station 510 -0.660 0.008 -84.793  <0.001
Difference for Station 511 -0.399  0.008 -51.036  <0.001
Difference for Station 620 0.217 0.008 27.182  <0.001
Difference for Station 622 0.943  0.008 120.087  <0.001
Day of week (ref. = Weekday)
Saturday -0.122  0.006 -19.745  <0.001
Sunday -0.614  0.006 -98.815  <0.001
Holiday (ref. = No holiday) -0.320 0.012 -27.074  <0.001
Season (ref. = Winter)

Spring 0.097 0.007 14.302  <0.001

Summer 0.135 0.007 19.721  <0.001

Fall 0.109 0.007 16.205 <0.001

Precipitation (ref. = No rain / no snow)

Light rain -0.021  0.006 -3.355 0.001

Heavy rain -0.024  0.039 -0.618 0.536

Light snow -0.062  0.008 -7.364  <0.001

Heavy snow -0.123  0.013 -9.733  <0.001

Max temperature difference from average 0.000  0.000 0.360 0.719
Air quality index (ref. = Green)

Yellow (AQI = 51-100) (Station 301) -0.011 0.016 -0.704 0.482
Difference for Station 363 0.004 0.022 0.167 0.868
Difference for Station 510 -0.008  0.022 -0.352 0.725
Difference for Station 511 0.004 0.022 0.183 0.855
Difference for Station 620 0.019 0.022 0.861 0.390
Difference for Station 622 0.033 0.023 1.412 0.158

Orange (AQI = 101-150) (Station 301) 0.079 0.036 2.174 0.030
Difference for Station 363 -0.031 0.051 -0.604 0.546
Difference for Station 510 -0.076  0.050 -1.534 0.125
Difference for Station 511 -0.058 0.050 -1.153 0.249
Difference for Station 620 -0.018 0.050 -0.367 0.714
Difference for Station 622 0.009 0.050 0.184 0.854

Notes: N = 3,987; adjusted R-squared = 0.963.
Bus ridership

Table SI-7 reports the results of the linear regression model for bus ridership. It should be noted
that we did not run a multilevel model for our public transportation data because we did not have
location-specific data, only system-level bus ridership. Since the transit service provider (CVTD)
did not operate during Sundays, this variable’s estimates are missing from the model. The
estimates for both the yellow and orange air quality days were found to be negative but were not
statistically significant.
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Table SI-7: Linear regression model for bus ridership

Coefficients Estimate SE  t-statistic p-value
Intercept 8.686  0.026 332.388  <0.001
Day of week (ref. = Weekday)

Saturday -1.245 0.025 -49.883  <0.001
Holiday (ref. = No holiday) -1.238  0.066 -18.829  <0.001
Season (ref. = Winter)

Spring -0.078  0.031 -2.512 0.012

Summer -0.394  0.030 -13.292  <0.001

Fall 0.057  0.031 1.839 0.066
Precipitation (ref. = No rain / no snow)

Light rain -0.032  0.027 -1.185 0.237

Heavy rain 0.144  0.231 0.626 0.532

Light snow -0.069  0.037 -1.843 0.066

Heavy snow -0.041 0.058 -0.697 0.486
Max temperature difference from average 0.000 0.002 0.065 0.949
Air quality index (ref. = Green)

Yellow (AQI = 51-100) -0.017  0.031 -0.556 0.578

Orange (AQI =101-150) -0.075 0.063 -1.186 0.236

Notes: N = 608; adjusted R-squared = 0.836.
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