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Findings 

Smartphones and wearable devices are driving a boom in mobility data. We use 
data-driven tools for classifying movement data into five different travel modes 
(bicycle, walk, bus, motor vehicle and SkyTrain) in Vancouver and St. John’s, 
Canada. Using data from a GPS-enabled smartphone app (Itinerum) combined 
with a wrist-worn accelerometer (GENEActiv) collected over a period of 67 days, 
we classified modes using Support Vector Machines from 4071 trips. Pre-labelled 
data were used to classify modes with 90.9% accuracy when data from both 
devices were combined in comparison to a single data source with accuracy 
ranging between 55.5% and 79.4%. 

Research Question and Hypothesis 
Understanding travel patterns is critical for transportation planning and 
monitoring impact of policy and infrastructure. Traditional travel data 
collection techniques, like GPS-based travel surveys (Stopher, FitzGerald, and 
Zhang 2008), are prone to underreporting of trip activity by participants 
(Bricka and Bhat 2006). As a result, sensor data collected by health apps on 
smartphones or wearable devices have emerged as a method for collecting data 
on transportation mode choices and travel patterns. 

Researchers (Zhou and Hu 2008; Ellis et al. 2014) typically use GPS and 
accelerometry data from wearable health monitoring devices with 
accelerometer and GPS sensors built within the same device. Integrating these 
datasets from different platforms is challenging because of the varying space-
time resolutions each device has. Some studies (Stenneth et al. 2011; 
Hemminki, Nurmi, and Tarkoma 2013) demonstrated how tree-based 
machine learning algorithms could be applied to GPS data collected at a 
frequency of 15 seconds for GPS data from mobile phones to 1.2 s from 
accelerometers for mode detection. However, there is a major gap in 
determining an optimal time window generalizable across multiple data 
platforms for achieving the highest level of prediction accuracy when it comes 
to classifying transportation modes. 

The goal of our study is to demonstrate how classification of GPS and 
accelerometer collected from two different platforms into transportation 
modes - active (bike/walk), private (car) and public (trams/railways/subway), is 
more accurate when features from both sources are combined. We hypothesize 
that classification accuracy improves when data are combined using varying 
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Figure 1: Total number of trips with average trip duration of each transportation mode 

window sizes to tackle noise filtering from the fused data. To this end we use 
a supervised classification algorithm Support Vector Machine (SVM) with a 
radial basis function. 

Methods and Data 
We recorded 4071 user-defined trips after removing stops and congestions 
from 12 users for a period of 6 months from a smartphone application 
Itinerum (Patterson et al. 2019) which collected GPS data and wrist-worn 
accelerometer (GENEActiv 2020). The data were analyzed at 1-minute 
temporal resolution and included 93,772 data points. Participants were from 
the cities of Vancouver and St. John’s, Canada. All trips were pre-labelled by 
participants and categorized into 5 different travel modes with varying trip 
durations (Figure 1), with an average trip duration of 24.5 minutes for all trips 
(min = 2 mins, max = 62 mins, bicycle= 37.9 mins, bus = 21.8 mins, motor 
vehicle = 22.8 mins, sky train = 23.7 mins, walk = 37.9 mins). Walking (n=964) 
followed by motor vehicles (n=321) were the most common modes in the 
dataset. 

We computed summary statistics of speed and vector magnitude of 
acceleration –from raw GPS and accelerometer data (Table 1) and used signal 
processing functions (Table 1) to extract a total of 37 features which were used 
as input to the SVM algorithm. We also examined different window sizes of 3, 
5, 7, and 10 seconds by summarizing the mean of the raw features in each time 
period in order to remove noise from the raw data. All analysis were performed 
using R 3.6.1 and ArcGIS© 10.7.1. 
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Table 1: Features extracted from raw GPS and Accelerometer data 

Key Features Key Features 
Summary Summary 
statistics statistics 

Mode Mode Description Description Reference Reference 

Distance 

Mean, SD, 
IQR, 

Skewness, 
Kurtosis 

GPS 

Euclidean distance between consecutive GPS 
points along a trajectory. 

Jahangiri and 
Rakha (2014) 
Feng and 
Timmermans 
(2013) 
Yang et al. 
(2018) 

Speed Rate of change in net displacement 

Net 
displacement 

The squared net displacement between the current 
relocation and the first relocation of the trajectory. 

Height 
Relative altitude of a point along the trajectory 
from the ground. 

Relative 
turning angle 

A relative angle between successive GPS points 
along a trajectory. 

Vector 
magnitude of 
acceleration 

Accelerometer 

A square root of the squared sums of directional 
accelerations along X,Y and Z axes. 

Peak 
intensity of 
acceleration 

Max 
The number of the signal (acceleration) peak 
appearances within a certain period of time ‘t’ 

Hemminki, 
Nurmi, and 
Tarkoma 
(2013) 
Reddy et al. 
(2010) 

Dominant 
frequency of 
acceleration 

Max 
The peak (max) acceleration obtained after 
performing a Fast Fourier transform on the 
acceleration signal. 

Signal power 
of 
acceleration 

Mean 
The instantaneous power of the acceleration signal 
– calculated as the square of the acceleration 
magnitude at instant ‘t’ 

We applied a supervised classification algorithm - Support vector machines 
(SVMs) to our input feature set in order to classify travel modes. SVMs, first 
introduced by Cortes and Vapnik (1995) have been heavily used in data mining 
for different purposes (Hamel 2011; Li et al. 2011; Anguita et al. 2012) and are 
a non-probabilistic binary classifier that separates two classes by determining 
an optimal separation hyperplane. We used a multiclass separation using a 
radial basis function to classify all five travel modes by coupling binary classifier 
probabilities (Wu, Lin, and Weng 2004). 70% data were used for training 
the SVM model and the remaining 30% for testing with a 10-fold repeated 
cross-validation with 3 repeats across 3 feature set combinations (only GPS, 
only accelerometer, both GPS and accelerometer). Using a Synthetic Minority 
Sampling Technique (SMOTE) a resampling technique (Chawla et al. 2002) 
we accounted for the imbalance in trips among the five modes and calculated 
the area under the curve (AUC) (Hand and Till 2001) from resampled data 
to test the average accuracy of our model we use Equation 1. AUC score 
measures the separability between the estimated probability distributions that 
a randomly chosen member of one class belongs to that particular class 
compared to other classes. 
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Table 2: Variation in model accuracy with window size and type of features using SVMs 

Feature Set Feature Set 

SVM Hyperparameters: methods = “repeatedcv”, k = 10 folds, repeats = 3, resampling = “smote”, kernel = SVM Hyperparameters: methods = “repeatedcv”, k = 10 folds, repeats = 3, resampling = “smote”, kernel = 
“radial” “radial” 

Window Size Window Size LowerLower  (5% CI) (5% CI) Accuracy Accuracy UpperUpper  (95% CI) (95% CI) 

GPS GPS 

3s 0.642 0.689 0.734 

5s 0.705 0.763 0.815 

7s 0.727 0.794 0.852 

10s 0.779 0.854 0.911 

Accelerometer Accelerometer 

3s 0.510 0.560 0.610 

5s 0.4915 0.555 0.618 

7s 0.495 0.571 0.646 

10s 0.526 0.618 0.704 

GPS and GPS and 
Accelerometer Accelerometer 

3s 0.703 0.748 0.790 

5s 0.758 0.812 0.859 

7s 7s 0.856 0.856 0.909 0.909 0.947 0.947 

10s 0.846 0.911 0.955 

We also report the F1-score, precision and recall based on sensitivity and 
specificity (Altman and Bland 1994) of each mode along with the balanced 
accuracy (Velez et al. 2008). Finally we visualize the classification accuracy using 
a confusion matrix for the best feature combination. Our study is a proof of 
concept for sensor fusion and window size, so we do not compare different 
machine learning methods. 

Findings 
We found the model accuracy varied with the type of data sources and window 
sizes used. The overall accuracy of the fitted model improved with increasing 
window size with the highest mean accuracy (91.1%) achieved by combining 
both GPS and accelerometer features (Table 2). Among all scenarios, the 
window size of 7s had the lowest variance in accuracy (Table 2) using SMOTE 
to account for imbalanced classes. The accelerometer features had the lowest 
mean accuracy of 55.5%. 

The best model fit with 90.9% accuracy was obtained by combining both 
GPS and accelerometer data with a 7s window. The overall AUC score was 
0.905 (Figure 2) for all 5 classes combined. The maximum accuracy (95% 
CI) of the SVM classifier in the 7s window when we fit combined features 
showed an improvement by nearly 9.5% from only GPS and 30.1% from only 
accelerometer features respectively. 

The confusion matrix in Figure 3 shows the classification accuracy of each 
mode on the 30% testing data. Overall, public transportation modes were most 
accurately classified (Table 3) followed by bicycling – after accounting for 
imbalanced data. 

Our model is a good approximation of human mobility as per previous studies 
(Hemminki, Nurmi, and Tarkoma 2013; Widhalm, Nitsche, and Brändie 
2012) and would work well with similar populations. Our methods can be 
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Figure 2: ROC curve showing sensitivity and specificity across different feature sets for window size of 7s 

Table 3: Prediction accuracy assessment for each transportation mode using both GPS and Accelerometer features of window size 7s 

Class Class Sensitivity Sensitivity Specificity Specificity Precision Precision Recall Recall F1 F1 Balanced Accuracy Balanced Accuracy 

Bicycle 0.857 0.952 0.774 0.857 0.814 0.905 

Bus 0.917 1.000 1.000 0.917 0.957 0.958 

Motor Vehicle 0.875 0.993 0.966 0.875 0.918 0.934 

Sky Train 1.000 1.000 1.000 1.000 1.000 1.000 

Walk 0.927 0.899 0.918 0.927 0.922 0.913 

used to inform planners about the most preferred travel modes in a city and 
to understand how modes change with interventions using open reproducible 
methods for decision making purposes. 
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Figure 3: Confusion matrix of all travel modes using test data for GPS and Accelerometer features with window size 7s 
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