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Transport Findings 

Urban mobility increasingly relies on multimodality, combining the use of bicycle 
paths, streets, and rail networks. These different modes of transportation are well 
described by multiplex networks. Here we propose the overlap census method 
which extracts a multimodal profile from a city’s multiplex transportation 
network. We apply this method to 15 cities, identify clusters of cities with similar 
profiles, and link this feature to the level of sustainable mobility of each cluster. 
Our work highlights the importance of evaluating all the transportation systems 
of a city together to adequately identify and compare its potential for sustainable, 
multimodal mobility. 

research question and hypothesis 
The infrastructure of different modes of transportation can be described as a 
mathematical object, the multiplex transport network (Morris and Barthelemy 
2012; Strano et al. 2012; Barthelemy et al. 2013; Battiston, Nicosia, and Latora 
2014; Gallotti and Barthelemy 2014; De Domenico et al. 2014; Strano et al. 
2015; Aleta, Meloni, and Moreno 2017; Lee et al. 2017). A city’s multiplex 
transport network contains the layer of streets and other coevolving network 
layers, such as the bicycle or the rail networks, which together constitute the 
multimodal transportation backbone of a city. Due to the car-centric 
development of most cities (Jacobs 1961), streets form the most developed 
layers (Gössling et al. 2016; Szell 2018) and define or strongly limit other layers: 
For example, sidewalks are by definition footpaths along the side of a street 
and make up a substantial part of a city’s pedestrian space (Gössling et al. 
2016). Similarly, most bicycle paths are part of a street or are built along the 
side. Yet, the different layers of a multimodal network typically serve as diverse 
channels to permeate a city. Here we consider the transport networks of 15 
world cities and develop an urban fingerprinting technique based on multiplex 
network theory to characterize the various ways in which transport layers can 
be interconnected, identifying the potential for multimodal transport. Using 
clustering algorithms on the resulting urban fingerprints, we find distinct 
classes of cities, reflecting their transport priorities. 
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methods and data 
We acquired urban transportation networks from multiple cities around the 
world, defined by their administrative boundaries, using OSMnx (Boeing 
2017). These data sets are of high quality (Haklay 2010; Girres and Touya 
2010) in terms of correspondence with municipal open data (Ferster et al. 
2019) and completeness (Barbosa-Filho et al. 2018). The various analyzed 
urban areas and their properties are reported in Table 1. Figure 1 shows the 
different network layers for Manhattan, one of our analyzed cities. 
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Table 1. 

Pedestrian Bicycle Rail Street Population 

Nodes Links ?k? Nodes Links ?k? Nodes Links ?k? Nodes Links ?k? 

Amsterdam 23,321 33,665 2.89 34,529 35,619 2.06 1,096 1,655 3.02 15,125 21,722 2.87 872,680 

Barcelona 20,203 30,267 3.00 7,553 7,647 2.02 249 249 2.00 10,393 15,809 3.04 1,600,000 

Beihai 2,026 2,978 2.94 0 0 0.00 59 62 2.10 2,192 3,209 2.93 1,539,300 

Bogota 81,814 121,038 2.96 9,760 9,651 1.98 166 165 1.99 62,017 91,197 2.94 7,412,566 

Budapest 73,172 106,167 2.90 10,494 10,318 1.97 1,588 1,964 2.47 37,012 52,361 2.83 1,752,286 

Copenhagen 30,746 41,916 2.73 13,980 13,988 2.00 276 369 2.67 15,822 20,451 2.59 2,557,737 

Detroit 47,828 78,391 3.28 3,663 3,626 1.98 20 21 2.10 28,462 45,979 3.23 672,662 

Jakarta 140,042 191,268 2.73 248 231 1.86 58 54 1.86 138,388 188,637 2.73 10,075,310 

LA 89,543 128,757 2.88 14,577 14,428 1.98 173 221 2.55 71,091 101,692 2.86 3,792,621 

London 270,659 351,824 2.60 62,398 60,043 1.92 2,988 3,535 2.37 179,782 219,917 2.45 8,908,081 

Manhattan 13,326 21,447 3.22 3,871 3,777 1.95 349 436 2.50 5,671 9,379 3.31 1,628,701 

Mexico 108,033 158,425 2.93 5,218 5,278 2.02 370 364 1.97 95,375 140,684 2.95 8,918,653 

Phoenix 111,363 157,075 2.82 35,631 35,979 2.02 105 138 2.63 73,688 102,139 2.77 1,445,632 

Portland 50,878 72,958 2.87 24,252 24,325 2.01 230 340 2.96 35,025 49,062 2.80 583,776 

Singapore 82,808 110,612 2.67 12,981 12,947 1.99 683 740 2.17 50,403 66,779 2.65 5,638,700 

Measures for the administrative area of analyzed cities. The number of nodes, links and average degree ( ) for each layer in all cities of our dataset are highly diverse due to the varying developmental levels and focus of transport. The range of population in 
the analyzed cities goes from half million people to ten million people living in Jakarta, this allows to have a range of different sizes and cover different developmental stages. 

Data and code to replicate the results are available in: (https://doi.org/10.7910/DVN/GSOPCK), and: 
(https://github.com/nateraluis/Multimodal-Fingerprint). 

https://doi.org/10.7910/DVN/GSOPCK
https://github.com/nateraluis/Multimodal-Fingerprint


Figure 1. 

(Map plot left) Multiplex network representation of Manhattan with the four analyzed layers of transport infrastructure (pedestrian 
paths, bicycle paths, rail lines, and streets), with data from OpenStreetMap. (Right) Network information for each layer, number of 
nodes, links and average degree ( ). 

We characterize each city as a multiplex network (Boccaletti et al. 2014; Kivela 
et al. 2014; Battiston, Nicosia, and Latora 2017) with  layers and  nodes 
that can be active in one or more layers in the system. Layers follow a primal 
approach (Porta, Crucitti, and Latora 2006) where nodes represent 
intersections (that may be present in one or more layers), and links represent 
streets (denoted by s), bicycle paths and designated bicycle infrastructure (b), 
subways, trams and rail infrastructure (r), or pedestrian infrastructure (p). 
Construction of these intersection nodes follows the topological simplification 
rules of OSMnx (Boeing 2017). 

In a multimodal city, we expect to find many transport hubs that connect 
different layers, such as train stations with bicycle and street access, i.e. nodes 
that are active in different multiplex configurations. Here we propose a method 
to assess all such combinations of node activities in the system, helping us to 
learn how well connected different modes are. For each city, we build a profile 
based on the combinations of node activities, and refer to it as overlap census 
(Figure 2). The overlap census captures the percentage of nodes that are active 
in different multiplex configurations and provides an “urban fingerprint” of its 
multimodality (Aleta, Meloni, and Moreno 2017). To define the overlap census 
formally, given a multiplex transport network with  layers the overlap census 
is a vector of  components, which accounts for the fractions of nodes 
that can be reached through at least one layer. 

In Fig. 2(a) we show a schematic of how the overlap census is built: taking 
the multiplex network, and calculating the percentage of nodes that overlap in 
different configurations. The multiplex approach addresses the multimodality 
of a city: it not only counts how many nodes or links there are in each layer, but 
it shows how they are combined, revealing the possible multimodal mobility 
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combinations in the city. Understanding the possibilities for interchange 
between mobility layers provides us with a better understanding of urban 
systems, showing us the complexity and interplay between layers. 

findings 
Even in a multimodally “optimal” city there will be a high heterogeneity of 
node activities due to the different speeds and nature of transport modes, 
implying, for example, a much lower density of nodes necessary for a train 
network than for a bicycle network. Therefore, a good way to assess a city’s 
overlap census is by comparing it with the overlap census of other cities. We 
find similarities between cities via a k-means algorithm fed with fifteen vectors 
(one per city), where each vector contains the percentages of nodes active in 
each possible configuration. The algorithm separates the 15 analyzed cities into 
six different clusters [Fig. 2(b)]. 

On the left half of the overlap census, we show the configurations in which 
nodes are not active in the street layer, while the right half contains car-related 
configurations [Fig. 2(c)]. These clusters of cities are useful to explain 
similarities in infrastructure planning in different transport development paths 
(Rodrigue 2013; Louf and Barthelemy 2014), with clusters of car-centric 
urbanization (like Mexico, Beihai, and Jakarta) opposed to clusters that show 
a more multimodal focus in their mobility infrastructure (like Copenhagen, 
Manhattan, Barcelona, and Portland). In the extreme cluster that contains only 
Amsterdam, close to  of nodes are active in the bicycle layer, whereas in the 
Mexico-Beihai-Jakarta cluster more than  of nodes are active in the street-
pedestrian configuration. The concentration of nodes in just one configuration 
informs not only about the mobility character of the city, i.e. Amsterdam being 
a bicycle-friendly city, but unveils the importance of explicitly considering 
overlooked layers and their interconnections. For example, Singapore, 
Budapest, London, and Detroit have two main peaks indicating that most of 
their nodes are either active in the street-pedestrian or only in the pedestrian 
configuration. This is not the case in Los Angeles and Bogota, where the 
majority of nodes are active in the car-pedestrian combination, i.e. the 
pedestrians have to share most of the city with cars. Our multimodal 
fingerprint unravels how different transport modes are interlaced, helping 
identifying which layer (or set of layers) could be improved to promote 
multimodal, sustainable mobility. 

To summarize, we propose the new “overlap census” method based on 
multiplex network theory allowing to rigorously identify and compare the 
multimodal potential of cities. 
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Figure 2. 

(a) Schematic of multiplex layers in a city (left) and its transformation to the overlap census (right). In the overlap census, the vertical 
red line gives a visual separation of the left from the right half where nodes become active in the street layer. High spikes in the right 
half indicate car-centricity. (b) Clusters of cities based on similarity of their overlap census. We find six different clusters using a k-means 
algorithm (coloured areas), which explain more than 90% of the variance. (c) Overlap census for cities in each cluster. The first one 
corresponds to Amsterdam (the city with most active nodes in bicycle-only configurations). The Copenhagen-Manhattan-Barcelona-
Portland city cluster has manyactive nodes in pedestrian-only and bicycle-only configurations, representing an active mobility city. The 
clusters of Los Angeles-Bogota and Mexico-Beihai-Jakarta are car-centric. 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 

International License (CCBY-SA-4.0). View this license’s legal deed at https://creativecommons.org/
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