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Definitions
1. Degree

The street network is described by a network G = (V,E) where V is a set of N nodes and E
the set of links between these nodes. The nodes represent the intersections and the links
segments of roads between these intersections. The degree k of a node is the number of
streets converging to it. A node of degree k = 1 is a dead-end, nodes of degree k = 2 are
generally removed and nodes of degree 3, 4. (or more) represent typical intersections. The
average degree is then simply given by

where k; is the degree of node i. In general, the number of nodes of degree k is denoted by
N (k) and the proportion of dead-ends reads then

_N()
P11 = N
and of k = 4 intersections:
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2. Detour index

The detour index (or stretch factor) for a pair of nodes i and j is defined as (Aldous & Shun,
2010; Barthelemy, 2022)
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where d, is the Euclidean distance between i and j, and d,. is the route distance computed
on the network. We then have

Qmax = max Q(i,j)

We can also average over pairs of nodes at a given distance d and construct the detour profile

1
0D =f D, QG
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where E(d) is the number of pairs of nodes at distance d.
3. Total and average length

The total length of the network is defined as (Barthelemy, 2022)
L= Z I(e)
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total length [(e) is the length of edge e. The average edge length is then

4. Spatial planarity ratio

The spatial Planarity Ratio, ¢ (Boeing, 2020) represents the ratio of the number i, of
nonplanar intersections (i.e., non-dead-end nodes in the nonplanar, three-dimensional,
spatially-embedded graph) to the number i), of planar intersections (i.e., edge crossings in the
planar, two-dimensional, spatially-embedded graph):
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The (positive) quantity i, — i,, is then equal to the number of nonplanar edge crossings such
as overpasses and underpasses in the network.

5. Fraction of one-way streets

The fraction p of one-way streets is defined as (Verbavatz & Barthelemy, 2021)

p=7

where L;is the total length of one-way streets and L the total length of the network.

6. Betweenness centrality



An interesting quantity, first discussed in the context of non-spatial network (Freeman, 1977)
is the betweenness centrality (BC). The betweenness centrality (BC) of a node i is defined as
(Freeman, 1977)
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where g (s, t) is the number of shortest paths from s to t, and o;(s, t) is the number of such
shortest path that go through the node i (and a similar definition for the BC of edges). The
normalization (here chosen as the number of pairs of nodes different from i) can be slightly
different according to different authors.
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