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Defini0ons 
 
1. Degree 
 
The street network is described by a network 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of 𝑁 nodes and 𝐸 
the set of links between these nodes. The nodes represent the intersec=ons and the links 
segments of roads between these intersec=ons. The degree 𝑘 of a node is the number of 
streets converging to it. A node of degree 𝑘 = 1 is a dead-end, nodes of degree 𝑘 = 2 are 
generally removed and nodes of degree 3, 4. (or more) represent typical intersec=ons. The 
average degree is then simply given by 
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1
𝑁-𝑘!
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where 𝑘!  is the degree of node 𝑖. In general, the number of nodes of degree 𝑘 is denoted by 
𝑁(𝑘) and the propor=on of dead-ends reads then 
 

𝑝$ =
𝑁(1)
𝑁  

 
and of 𝑘 = 4 intersec=ons: 

𝑝% =
𝑁(4)
𝑁  

 
2. Detour index 
 
The detour index (or stretch factor) for a pair of nodes 𝑖 and 𝑗 is defined as (Aldous & Shun, 
2010; Barthelemy, 2022) 
 

𝑄(𝑖, 𝑗) =
𝑑&(𝑖, 𝑗)
𝑑'(𝑖, 𝑗)

 



 
where  𝑑'  is the Euclidean distance between 𝑖 and 𝑗, and 𝑑&  is the route distance computed 
on the network. We then have 
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We can also average over pairs of nodes at a given distance 𝑑 and construct the detour profile 

𝑄(𝑑) =
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!,,	..0.		1!(!,,)#1

 

 
where 𝐸(𝑑) is the number of pairs of nodes at distance 𝑑. 
 
3. Total and average length 
 
The total length of the network is defined as (Barthelemy, 2022) 
 

𝐿 =-𝑙(𝑒)
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total length 𝑙(𝑒) is the length of edge 𝑒. The average edge length is then  
 

𝑙$ =
1
𝑁 𝐿 

 
4. Spa9al planarity ra9o 
 
 The spa=al Planarity Ra=o, 𝜑 (Boeing, 2020) represents the ra=o of the number 𝑖6 of 
nonplanar intersec=ons (i.e., non-dead-end nodes in the nonplanar, three-dimensional, 
spa=ally-embedded graph) to the number 𝑖7 of planar intersec=ons (i.e., edge crossings in the 
planar, two-dimensional, spa=ally-embedded graph): 

𝜑 =
𝑖7
𝑖6

 

 
The (posi=ve) quan=ty 𝑖7 − 𝑖6 is then equal to the number of nonplanar edge crossings such 
as overpasses and underpasses in the network. 
 
5. Frac9on of one-way streets 
 
The frac=on 𝑝 of one-way streets is defined as (Verbavatz & Barthelemy, 2021) 
 

𝑝 =
𝐿$
𝐿  

 
where 𝐿$is the total length of one-way streets and 𝐿 the total length of the network. 
 
 
6. Betweenness centrality 



 
An interes=ng quan=ty, first discussed in the context of non-spa=al network (Freeman, 1977)  
is the betweenness centrality (BC). The betweenness centrality (BC) of a node 𝑖 is defined as 
(Freeman, 1977) 
 

𝑔(𝑖) =
1

(𝑁 − 1)(𝑁 − 2) -
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where 𝜎(𝑠, 𝑡) is the number of shortest paths from 𝑠 to 𝑡, and 𝜎!(𝑠, 𝑡) is the number of such 
shortest path that go through the node 𝑖 (and a similar defini=on for the BC of edges). The 
normaliza=on (here chosen as the number of pairs of nodes different from 𝑖) can be slightly 
different according to different authors.  
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