Supplementary Information A review of the structure of street networks

Marc Barthelemv^{1,2}

¹ Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, Gif-sur-Yvette, France. ² Centre d'Analyse et de Mathématique Sociales CAMS, UMR 8557 CNRS-EHESS, Ecole des Hautes Etudes en Sciences Sociales, Paris, France

Geoff Boeing3

³ Department of Urban Planning and Spatial Analysis, Sol Price School of Public Policy, University of Southern California, 301A Lewis Hall, Los Angeles, CA 90089-0626, USA

Definitions

1. Degree

The street network is described by a network $G = (V, E)$ where V is a set of N nodes and E the set of links between these nodes. The nodes represent the intersections and the links segments of roads between these intersections. The degree k of a node is the number of streets converging to it. A node of degree $k = 1$ is a dead-end, nodes of degree $k = 2$ are generally removed and nodes of degree 3, 4. (or more) represent typical intersections. The average degree is then simply given by

$$
\bar{k} = \frac{1}{N} \sum_{i=1}^{N} k_i
$$

where k_i is the degree of node i. In general, the number of nodes of degree k is denoted by $N(k)$ and the proportion of dead-ends reads then

$$
p_1 = \frac{N(1)}{N}
$$

and of $k = 4$ intersections:

$$
p_4 = \frac{N(4)}{N}
$$

2. Detour index

The detour index (or stretch factor) for a pair of nodes i and j is defined as (Aldous & Shun, 2010; Barthelemy, 2022)

$$
Q(i,j) = \frac{d_r(i,j)}{d_e(i,j)}
$$

where d_e is the Euclidean distance between *i* and *j*, and d_r is the route distance computed on the network. We then have

$$
Q_{max} = \max_{i,j} Q(i,j)
$$

We can also average over pairs of nodes at a given distance d and construct the detour profile

$$
Q(d) = \frac{1}{E(d)} \sum_{i,j \text{ s.t. } d_e(i,j)=d} Q(i,j)
$$

where $E(d)$ is the number of pairs of nodes at distance d.

3. Total and average length

The total length of the network is defined as (Barthelemy, 2022)

$$
L=\sum_{e\in E}l(e)
$$

total length $l(e)$ is the length of edge e . The average edge length is then

$$
l_1=\frac{1}{N}L
$$

4. Spatial planarity ratio

The spatial Planarity Ratio, φ (Boeing, 2020) represents the ratio of the number i_n of nonplanar intersections (i.e., non-dead-end nodes in the nonplanar, three-dimensional, spatially-embedded graph) to the number i_n of planar intersections (i.e., edge crossings in the planar, two-dimensional, spatially-embedded graph):

$$
\varphi = \frac{i_p}{i_n}
$$

The (positive) quantity $i_p - i_n$ is then equal to the number of nonplanar edge crossings such as overpasses and underpasses in the network.

5. Fraction of one-way streets

The fraction p of one-way streets is defined as (Verbavatz & Barthelemy, 2021)

$$
p=\frac{L_1}{L}
$$

where L_1 is the total length of one-way streets and L the total length of the network.

6. Betweenness centrality

An interesting quantity, first discussed in the context of non-spatial network (Freeman, 1977) is the betweenness centrality (BC). The betweenness centrality (BC) of a node i is defined as (Freeman, 1977)

$$
g(i) = \frac{1}{(N-1)(N-2)} \sum_{s,t \neq i} \frac{\sigma_i(s,t)}{\sigma(s,t)}
$$

where $\sigma(s,t)$ is the number of shortest paths from s to t, and $\sigma_i(s,t)$ is the number of such shortest path that go through the node i (and a similar definition for the BC of edges). The normalization (here chosen as the number of pairs of nodes different from i) can be slightly different according to different authors.

Bibliography

Barthelemy, M., 2022. *Spatial Networks: A Complete Introduction: From Graph Theory and Statistical Physics to Real-World Applications.* Heidelberg: Springer Nature.

Boeing, G., 2020. Planarity and street network representation in urban form analysis. Environment and Planning B: Urban Analytics and City Science, 47(5), pp. 855-69.

Verbavatz, V. & Barthelemy, M., 2021. From one-way streets to percolation on random mixed graphs. *Physical Review E,* 103(4), p. 042313.

Freeman, L., 1977. A set of measures of centrality based on betweenness. *Sociometry,* Volume 1, pp. 35-41.

Aldous, D. & Shun, J., 2010. Connected Spatial Networks over Random Points and a Route-Length Statistic. Statist. Sci., 25(3), pp. 275-288.